
Internally uncomputable functions, with

application to the P versus NP problem.

Gerard Westendorp

September 21, 2019

Abstract

We clarify the concept of uncomputable functions, by considering a
machine M1 with bounded computation time. We show that important
functions, for example one that decides the Halting problem for M1, are
externally computable (by a larger machine that can simulate M1), but
not internally computable (by M1 itself). A similar line of reasoning
leads us to understand when diagonal arguments for demonstrating P 6=
NP relativise. We attempt to prove that P 6= NP, and are for the moment
able to give a lower bound for deciding problems in NP.

1 Introduction

The halting problem for Turing machines with unlimited memory and time
is undecidable. As explained by Turing [1] in his 1936 paper, this is related to
undecidable propositions in logic. It seems at first somewhat perplexing. It gives
us the feeling that perhaps there is something wrong with our understanding of
logic itself.

Part of the difficulty for our intuition lies with the unlimited size and allow-
able computation time of the machine considered. The case of a machine with
bounded computation time and bounded memory (We will call this a “bounded
machine”) is easier to understand. The Halting problem is in that case decid-
able by a function Hex(“P ′′) on a larger machine Mex, that is able to simulate
M1, run P for the bounded time of M1, and check if P halts. We call Hex an
externally computable function. However, as we will show, the Halting problem
is not decidable by an internally computable function, one that can run on M1

itself. In fact, we will show:

Theorem 1 (Bounded time Halting theorem) There is no computable func-
tion on a bounded machine M1 that can determine in less than T1 steps if pro-
grams on M1 halt within T1 steps.

The essential feature that causes undecidability (at least in the cases con-
sidered in this article) is the inability of an internal computation to do things

1

that only an external computation can. This observation helps us to better un-
derstand a number of important questions. In particular, we suggest we might
use it to prove that P is not NP.

Theorem 2 () There is no computable function G on a bounded machine M1

that can determine in less than T1 − d steps if functions (P) on M1 with a
bounded computation time of T1 steps, have an input such that their output
equals ”1”. T1 is a polynomial function of the size of the input of P , and d a
small positive integer.

Our method is very similar to the ”diagonal” arguments used by Turing to
prove his theorem on the Halting problem, except we have to take special care
with regards to the computation time, and the use of oracles.

Definition 1 (“P ′′ of P)

We will be considering programs P, that implement a 1-output bit function
P(N1) of N0 input bits, where N1 < 2N0 . “P ′′ will denote the description of
the program It does not matter for our argumentation if it is machine or source
code, or whether we treat “P ′′ as a string or integer)

2 The bounded time halting problem (proof of
theorem 1)

On a Machine M1 a bounded allowed computation time T1 is externally im-
posed. We could choose T1 such that it is equal to the (very large) number of
possible internal states of M1. If M1 has not halted by then, it never will. But
our argument works for any T1.
We will call programs whose computation time is limited to T1 internal pro-
grams of M1.

Lemma 1 (bounded time Halting theorem) There is no computable func-
tion on a bounded machine M1 that can determine in less than (T1–d) steps if
programs on M1 halt within T1 steps, where d is a small positive integer, inde-
pendent of T1.

Let H be a program implementing the function H(“P ′′) that takes as input
the description “P” of an internal program P such that:

Definition 2 (Program H implementing H(“P ′′))
H(“P ′′) = 1 if P (“P ′′) halts in T1 steps

H(“P ′′) = 0 if P (“P ′′) does not halt in T1 steps

2

Assume H halts in time T2.

Next define program H2, implementing the function H2(“P ′′):

Definition 3 (Program H2 with input “P ′′)
if H(“P ′′) = 1 , then H2 loops forever.

if H(“P ′′) = 0 , then H2 halts.

The output of H2 is not used.
H2 is basically as copy of H, with a conditional ”Halt” instruction. For our
argument to work, H must halt in T1 − d steps, where d is the time needed for
H2 to do a conditional halt Typically, d = 1 (The code for entering an endless
loop need not be completed, since all it must accomplish is keep busy until T1).

We can now show that H cannot exist if T2 <= T1 + d :

If H(“H ′′
2) = 1, then according to definition 2, H2(“H ′′

2) halts in T1 steps.
But according to definition 3, this would imply that H(“H ′′

2) = 0.

If H(“H ′′
2) = 0, then according to definition 2, H2(“H ′′

2) does not halts in
T1 steps. But according to definition 3, this would imply that H(“H ′′

2) = 1.

This concludes the proof of Lemma 1

Our arguments so far do not rule out the existence of an algorithm Ha with
runtime T2a, such that T1 − d ≤ T2a ≤ T1. Ha would use up almost all allowed
computation time, except for the time needed for 1 conditional instruction. Let
P1 be a program for which Ha takes time T2a to decide. Define P2 and P3,
such that:

P2: execute P1; if(1+1=2) then Halt.
P3: if(1+1=2) then execute P1.

If P1 halts, then in analysing P2, Ha must also do an extra check that condition
(1+1=2) halts. If P1 does not halt, then in analysing P3, Ha must also do an
extra check (1+1=2) to see if it needs to execute P1.

So if Ha would exist, we could construct programs from it which take longer
than T1. QED theorem 1.

2.1 Discussion

As soon as any method for analysing programs is expressible as a program with
a fixed description, then there will be programs sufficiently sophisticated to use

3

this description to ”fool” it. These sophisticated programs however, cannot
fool an external function. This distinction becomes confusing for machine with
unlimited capacity.
For a bounded machine, the Halting problem is not so mysterious. Functions
can be uncomputable, simply because there is not enough time to compute
them.

2.2 The bounded time halting problem in the presence of
an oracle

Suppose we equip M1 with an oracle (A) that implements H on M1 by some
special hardware, using only 1 computational step. Call this modified machine
M1A. Such an oracle would be very useful for determining if programs halt on
M1. If the oracle is external, meaning that programs other than H on M1 cannot
use A, then the Halting problem on M1 is be decidable. If however, the oracle
is internal, meaning that all programs on M1A are free to use the oracle, then
the proof of theorem 1 relativises: it remains valid regardless of the presence of
an oracle. This argumentation is already known for showing that oracles do not
make the halting problem for unbounded time decidable.

3 The P versus NP problem (proof of theorem
2)

We again consider a bounded machine M1. This time we consider programs
P implementing functions P (N1) that have N0 input bits, where N1 < 2N0

is an integer which represents the input bits. We ask whether there exists an
input N1, such that P (N1) = 1. This is an NP complete problem, because it is
equivalent to the boolean satisfiability (nSAT) problem. This time we set T1 to
some polynomial function of N0. We will cal T1 the verification time.

Let G be a program that takes as input a description “P ′′ of an internal
program P such that:

Definition 4 (Program G implementing the function G(“P ′′))
G(“P ′′) = 1 if ∃N1 (P (N1) = 1)

G(“P ′′) = 0 if 6 ∃N1 (P (N1) = 1)

Assume G halts in time T2, also polynomial in N0. We will cal T2 the analyses
time.

Define program G2, implementing the function G2(N1):

Definition 5 (Program G2 implementing the function G2(N1))

4

if G(“G2′′) = 1 , then output 0

if G(“G2′′) = 0 , then output 1

Note that G2 ignores its input N1, it just needs to have this input so that G
can attempt to analyse it. Its computation time is slightly longer than G. But
if G is polynomial, then so is G2. (It is a bit confusing to talk about the com-
putation time of a program that can not exist.)
G2 Needs to supply its own description to the function G. This is possible,
due to Rogers’s fixed-point theorem [5]. In principle, Rogers’s theorem does not
exclude the possibility that G2 becomes some very large program. We therefore
include an actual construction of G2 in Visual basic, given that the function G
exists.

5

Function G 2(N1)

’(The self-generated code excludes all comments)
’ First, put info needed for generating the code in a string array
a = Array("Function G 2(N1)", "a = Array(", "b = Chr(44)",

"c = Chr(34)", "d = Chr(41)", "e = Chr(13)",

"G 2 Code$ = a(0) & e & a(1)", "For i = 0 To 16",

"G 2 Code$ = G 2 Code$ & c & a(i) & c & b",

"Next i", "G 2 Code$ = G 2 Code$ & c & a(i) & c & b & d",

"For i = 0 To 16", "G 2 Code$ = G 2 Code$ & c & a(i)& e",

"Next i", "If G(G 2 Code$) = 1 Then G 2 = 0",

"If G(G 2 Code$) = 0 Then G 2 = 1", "End Function")

’Generate the code of G 2 as a string
b = Chr(44) ’comma character
c = Chr(34) ’quote character
d = Chr(41) ’close brackets character
e = Chr(13) ’return character
G 2 Code$ = a(0) & e & a(1)

For i = 0 To 16

G 2 Code$ = G 2 Code$ & c & a(i) & c & b

Next i

G 2 Code$ = G 2 Code$ & c & a(12) & c & b & d

For i = 1 To 16

G 2 Code$ = G 2 Code$ & a(i) & e

Next i

’The actual call to G by G 2
If G(G 2 Code$) = 1 Then G 2 = 0

If G(G 2 Code$) = 0 Then G 2 = 1

End Function

The internal version G cannot exist, as we will show:
If G(“G′′

2) = 1, then according to definition 4, there is a N1 such that
G2(N1) = 1. But according to definition 5, G2 always outputs 0.

If G(“G′′
2) = 0, then according to definition 4, there is no N1 such that

G2(N1) = 1. But according to definition 5, G2 always outputs 1.

So G2 and G cannot exist.

An external version of G, Gex, exists, that works by simulating P for all pos-
sible values of N1. This program will need a computation time exponential in
N0. This is not excluded by the above proof, because G2 does not have enough
computation time to include a call Gex.

We also cannot exclude a version of G2 that has a polynomial analyses time
T2, but with a greater polynomial than the maximum verification time T1. On

6

the other hand, if G2 claims to be able to decide our problem within some
polynomial upper bound, we seem free to choose our verification upper bound
to a greater polynomial than the one claimed by G2. That would contradict
the existence of G2.

3.1 Discussion

The reason that a program like G cannot exist, is that it claims something very
ambitious: to predict what other all other programs in its own class will do. Its
Achilles heel is that it is internal. This means the other programs can call it.
They have a much easier job. They only need to exist if G exists, and then
outsmart it.

We feel our arguments come quite close to proving P 6= NP , and we are
currently working to achieve further progress in this direction.

4 Diagonal arguments in the presence of an or-
acle

In their 1975 paper, Baker Gill Solovay [3] demonstrate some seemingly dis-
couraging results on trying to settle the P versus NP question with diagonal
arguments, such as we presented here. They argue that if the proof works also
in the presence of an oracle for G (the proof ”relativises”), then the conclu-
sion that no algorithm exists would contradict the very definition of the oracle.
Analogous to the bounded time halting problem, if we give both G and the pro-
grams P access to an oracle (A) turning G in to GA, and P into PA we have an
internal oracle, and the proof relativises: The oracle is only useful for analysing
problems that do not themselves use the oracle. One can still construct the
relavitised GA

2 , that GA cannot solve.
Suppose GA is dealing with the Boolean satisfiability problem, instead of

with programs P. The Boolean satisfiability problem is formulated in terms of
Boolean variables, and Boolean expressions the variables must satisfy. If the
problem is to have the same oracle as the solver, we must build the oracle in
terms of Boolean expressions, using auxiliary Boolean variables, in the fashion
described by Cook [2] in his 1971 paper. If we attempted to do this for Gex, we
would need an amount of extra variables exponential in N0. In that case the
proof does not relativise.

So either

7

• the problem can also use the oracle (the oracle is internal) and the
proof relativises. This is not a contradiction, because the oracle is
no longer effective when problems themselves use the oracle.

• the problem can not use the oracle (the oracle is external) and
the proof does not relativise. In that case PA = NPA. This fact
however is of no use for practical computation; when we actually
try to implement the oracle with the same tools that the problem
is allowed to use, it will require exponential computation time.

References

[1] Turing, A.M. ”On Computable Numbers, with an Application to the
Entscheidungsproblem”. Proceedings of the London Mathematical Society,
1937.

[2] Cook, Stephen. The complexity of theorem proving procedures Proceedings
of the Third Annual ACM Symposium on Theory of Computing, 1971.

[3] Baker, Theodore, John Gill, and Robert Solovay. Relativizations of the
P=?NP question SIAM Journal on computing, 1975.

[4] Radó, Tibor. On non-computable functions Bell System Technical Journal,
1962.

[5] Rogers, H. Theory of Recursive Functions and Effective Computability MIT
Press, 1967.

8

